The Spectral Radius of Graphs on Surfaces

نویسندگان

  • Mark N. Ellingham
  • Xiaoya Zha
چکیده

This paper provides new upper bounds on the spectral radius ρ (largest eigenvalue of the adjacency matrix) of graphs embeddable on a given compact surface. Our method is to bound the maximum rowsum in a polynomial of the adjacency matrix, using simple consequences of Euler’s formula. Let γ denote the Euler genus (the number of crosscaps plus twice the number of handles) of a fixed surface Σ. Then (i) for n ≥ 3, every n-vertex graph embeddable on Σ has ρ ≤ 2 +√2n+ 8γ − 6, and (ii) a 4-connected graph with a spherical or 4-representative embedding on Σ has ρ ≤ 1 + √2n+ 2γ − 3. Result (i) is not sharp, as Guiduli and Hayes have recently proved that the maximum value of ρ is 3/2+ √ 2n+ o(1) as n → ∞ for graphs embeddable on a fixed surface. However, (i) is the only known bound that is computable, valid for all n ≥ 3, and asymptotic to √ 2n like the actual maximum value of ρ. Result (ii) is sharp for the sphere or plane (γ = 0), with equality holding if and only if the graph is a ‘double wheel’ 2K1 +Cn−2 (+ denotes join). For other surfaces we show that (ii) is within O(1/n) of sharpness. We also show that a recent bound on ρ by Hong can be deduced by our method. * Supported by NSF Grant Number DMS-9622780

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

On Zagreb Energy and edge-Zagreb energy

In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2000